An efficient family of weighted-Newton methods with optimal eighth order convergence
نویسندگان
چکیده
Based on Newton’s method, we present a family of three-point iterative methods for solving nonlinear equations. In terms of computational cost, the family requires four function evaluations and has convergence order eight. Therefore, it is optimal in the sense of Kung–Traubhypothesis andhas the efficiency index1.682which is better than that ofNewton’s and many other higher order methods. Some numerical examples are considered to check the performance and to verify the theoretical results. Computational results confirm the efficient and robust character of presented algorithms. © 2013 Elsevier Ltd. All rights reserved.
منابع مشابه
Family of Optimal Eighth-Order of Convergence for Solving Nonlinear Equations
In this paper, a new family of optimal eighth-order iterative methods are presented. The new family is developed by combining Traub-Ostrowski’s fourth-order method adding Newton’s method as a third step and using the forward divided difference and three real-valued functions in the third step to reduce the number of function evaluations. We employed several numerical comparisons to demonstrate ...
متن کاملAn Optimal Eighth-Order Derivative-Free Family of Potra-Pták's Method
In this paper, we present a new three-step derivative-free family based on Potra-Pták’s method for solving nonlinear equations numerically. In terms of computational cost, each member of the proposed family requires only four functional evaluations per full iteration to achieve optimal eighth-order convergence. Further, computational results demonstrate that the proposed methods are highly effi...
متن کاملAn Efficient Family of Root-Finding Methods with Optimal Eighth-Order Convergence
We derive a family of eighth-order multipoint methods for the solution of nonlinear equations. In terms of computational cost, the family requires evaluations of only three functions and one first derivative per iteration. This implies that the efficiency index of the present methods is 1.682. Kung and Traub 1974 conjectured that multipoint iteration methods without memory based on n evaluation...
متن کاملAn efficient improvement of the Newton method for solving nonconvex optimization problems
Newton method is one of the most famous numerical methods among the line search methods to minimize functions. It is well known that the search direction and step length play important roles in this class of methods to solve optimization problems. In this investigation, a new modification of the Newton method to solve unconstrained optimization problems is presented. The significant ...
متن کاملLocal Convergence of an Optimal Eighth Order Method under Weak Conditions
We study the local convergence of an eighth order Newton-like method to approximate a locally-unique solution of a nonlinear equation. Earlier studies, such as Chen et al. (2015) show convergence under hypotheses on the seventh derivative or even higher, although only the first derivative and the divided difference appear in these methods. The convergence in this study is shown under hypotheses...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Appl. Math. Lett.
دوره 29 شماره
صفحات -
تاریخ انتشار 2014